Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
उत्तर
= `[ √3 + 1 ]/[ √3 - 1 ] xx [ √3 + 1 ]/[ √3 + 1 ]`
= `[( √3 + 1 )^2]/[( √3 )^2 - (1)^2 ]`
= `[ 3 + 1 + 2√3 ]/[ 3 - 1]`
= `[ 4 + 2√3 ]/[2]`
= `[ 2( 2 + √3 )]/[ 2 ]`
= 2 + √3
APPEARS IN
संबंधित प्रश्न
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
Draw a line segment of length `sqrt3` cm.
Draw a line segment of length `sqrt8` cm.