Advertisements
Advertisements
प्रश्न
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
उत्तर
`x + (1)/x`
`x + (1)/x = (4 - sqrt(15)) + (1)/((4 - sqrt(15))`
= `((4 - sqrt(15))^2 + 1)/((4 - sqrt(15))`
= `(16 + 15 - 8sqrt(15) + 1)/((4 - sqrt(15))`
= `(8(4 - sqrt(15)))/((4 - sqrt(15))`
= 8
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Draw a line segment of length `sqrt5` cm.
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`