Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
उत्तर
`1/(sqrt 3 - sqrt 2)`
`= 1/(sqrt 3 - sqrt 2) xx ((sqrt3+ sqrt 2))/((sqrt3+ sqrt2))`
`= ((sqrt 3 + sqrt 2))/((sqrt 3)^2 - (sqrt 2)^2) ...[(a+b)(a-b) = a^2 - b^2]`
`= ((sqrt 3 + sqrt 2))/(3 - 2)`
`= sqrt 3 + sqrt 2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`