Advertisements
Advertisements
प्रश्न
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
उत्तर
`(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)`
= `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) xx (sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) - sqrt(0.75))`
= `(sqrt(2.5) - sqrt(0.75))^2/((sqrt(2.5))^2 - (sqrt(0.75))^2`
= `(2.5 - 2 xx sqrt(2.5) xx sqrt(0.75) + 0.75)/(2.5 - 0.75)`
= `(3.25 - 2 xx sqrt(0.25 xx 10) xx sqrt(0.25 xx 3))/(1.75)`
= `(3.25 - 2 xx 0.25sqrt(30))/(1.75)`
= `(3.25 - 0.5sqrt(30))/(1.75)`
= `(3.25)/(1.75) - (0.5)/(1.75)sqrt(30)`
= `(325)/(175) - (50)/(175)sqrt(30)`
= `(13)/(7) - (2)/(7)sqrt(30)`
= `(13)/(7) + (-2/7)sqrt(30)`
= p + q`sqrt(30)`
Hence, p = `(13)/(7)` and q = `-(2)/(7)`.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`