Advertisements
Advertisements
प्रश्न
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
उत्तर
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)`
= `(7 + sqrt(5))/(7 - sqrt(5)) xx (7 + sqrt(5))/(7 + sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) xx (7 - sqrt(5))/(7 - sqrt(5))`
= `((7 + sqrt(5))^2)/(7^2 - (sqrt(5))^2) - (7 - sqrt(5))^2/(7 ^2 - (sqrt(5))^2`
= `(7^2 + 2 xx 7 xx sqrt(5) + (sqrt(5))^2)/(49 - 5) - (7^2 - 2 xx 7 xx sqrt(5) + (sqrt(5))^2)/(49 - 5)`
= `(49 + 14sqrt(5) + 5)/(44) - (49 - 14sqrt(5) + 5)/(44)`
= `(54 + 14sqrt(5))/(44) - (54 - 14sqrt(5))/(44)`
= `(2(27 + 7sqrt(5)))/(44) - (2(22 - 7sqrt(5)))/(44)`
= `(27 + 7sqrt(5))/(22) - (27 - 7sqrt(5))/(22)`
= `(27)/(22) + (7sqrt(5))/(22) - (27)/(22) + (7sqrt(5))/(22)`
= `(14sqrt(5))/(22)`
= `(7sqrt(5))/(11)`
= `0 + (7sqrt(5))/(11)`
= `"a" + "b"sqrt(5)`
Hence, a = 0 and b = `(7)/(11)`.
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`