Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
उत्तर
`(2)/(3 + sqrt(7)`
= `(2)/(3 + sqrt(7)) xx (3 - sqrt(7))/(3 - sqrt(7)`
= `(2(3 - sqrt(7)))/((3)^2 - (sqrt(7))^2)`
= `(2(3 - sqrt(7)))/(9 - 7)`
= `(2(3 - sqrt(7)))/(2)`
= 3 - `sqrt(7)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`