Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
उत्तर
`(42)/(2sqrt(3) + 3sqrt(2)`
= `(42)/(2sqrt(3) + 3sqrt(2)) xx (2sqrt(3) - 3sqrt(2))/(2sqrt(3) - 3sqrt(2)`
= `(42(2sqrt(3) - 3sqrt(2)))/((2sqrt(3))^2 - (3sqrt(2)^2)`
= `(84sqrt(3) - 126sqrt(2))/(12 - 18)`
= `(84sqrt(3) - 126sqrt(2))/(-6)`
= `-14sqrt(3) + 21sqrt(2)`
= `21sqrt(2) - 14sqrt(3)`
= `7(3sqrt(2) - 2sqrt(3))`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Draw a line segment of length `sqrt8` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`