Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
उत्तर
`(1)/(5 + sqrt(2))`
= `(1)/(5 + sqrt(2)) xx (5 - sqrt(2))/(5 - sqrt(2)`
= `(5 - sqrt(2))/((5)^2 - (sqrt(2))^2)`
= `(5 - sqrt(2))/(25 - 2)`
= `(5 - sqrt(2))/(23)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
Draw a line segment of length `sqrt5` cm.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`