Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
उत्तर
`(3sqrt(2))/sqrt(5)`
= `(3sqrt(2))/sqrt(5) xx sqrt(5)/sqrt(5)`
= `(3sqrt(2) xx sqrt(5))/(sqrt(5))^2`
= `(3sqrt(10))/(5)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Show that Negative of an irrational number is irrational.