Advertisements
Advertisements
प्रश्न
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
उत्तर
`(1)/x`
`(1)/x = (1)/((4 - sqrt(15))`
= `(1)/((4 - sqrt(15))) xx ((4 + sqrt(15)))/((4 + sqrt(15))`
= `((4 + sqrt(15)))/(16 - 15)`
= `(4 + sqrt(15))`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`