Advertisements
Advertisements
प्रश्न
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`
उत्तर
`(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3)`
`= (4 - sqrt5)/(4 + sqrt5) xx (4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) xx (5 - sqrt3)/(5 - sqrt3) + (4 + sqrt5)/(4 - sqrt5) xx (4 + sqrt5)/(4 + sqrt5) + 2/(5 - sqrt3) xx (5 + sqrt3)/(5 + sqrt3)`
`= (4 - sqrt5)^2/((4)^2 - (sqrt5)^2) + (2(5 - sqrt3))/((5)^2 - (sqrt3)^2) + (4 + sqrt5)^2/((4)^2 - (sqrt5)) + (2(5 + sqrt3))/((5)^2 - (sqrt3)^2)`
`= (16 + 5 - 8sqrt5)/(16 - 5) + (10 - 2sqrt3)/(25 - 3) + (16 + 5 + 8sqrt5)/(16 - 5) + (2(5 + sqrt3))/(25 - 3)`
`= (21 - 8sqrt5)/11 + (10 - 2sqrt3)/22 + (21 + 8sqrt5)/11 + (cancel(2)^1 (5 + sqrt3))/cancel(22)_11`
`= (21 - 8sqrt5)/11 + (cancel(2)^1(5 - sqrt3))/cancel(22)_11 + (21 + 8sqrt5)/11 + (5 + sqrt3)/11`
`= (21 - cancel(8sqrt5) + 5 - cancel(sqrt3) + 21 + cancel(8sqrt5) + 5 + cancel(sqrt3))/11`
`= (21 + 5 + 21 + 5)/11`
`= 52/11`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Using the following figure, show that BD = `sqrtx`.