Advertisements
Advertisements
प्रश्न
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
उत्तर
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
Rationalizing the denominator of each term, we have
= `(6(2sqrt(3) + sqrt(6)))/((2sqrt(3) - sqrt(6))(2sqrt(3) + sqrt(6))) + (sqrt(6)(sqrt(3) - sqrt(2)))/((sqrt(3) + sqrt(2))(sqrt(3) - sqrt(2))) - (4sqrt(3)(sqrt(6) + sqrt(2)))/((sqrt(6) - sqrt(2))(sqrt(6) + sqrt(2))`
= `(12sqrt(3) + 6sqrt(6))/(12 - 6) + (sqrt(18) - sqrt(12))/(3 - 2) - (4sqrt(18) + 4sqrt(6))/(6 - 2)`
= `(12sqrt(3) + 6sqrt(6))/(6) + (sqrt(18) - sqrt(12))/(1) - (4sqrt(18) + 4sqrt(6))/(4)`
= `2sqrt(3) + sqrt(6) + sqrt(18) - sqrt(12) - sqrt(18) - sqrt(6)`
= `2sqrt(3) - sqrt(12)`
= `2sqrt(3) - 2sqrt(3)`
= 0
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3