Advertisements
Advertisements
प्रश्न
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
उत्तर
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Rationalizing the denominator of each term, we have
= `(7sqrt(3)(sqrt(10) - sqrt(3)))/((sqrt(10) + sqrt(3))(sqrt(10) - sqrt(3))) - (2sqrt(5)(sqrt(6) - sqrt(5)))/((sqrt(6) + sqrt(5))(sqrt(6) - sqrt(5))) - (3sqrt(2)(3sqrt(2) - sqrt(15)))/((sqrt(15) + 3sqrt(2))(3sqrt(2)-sqrt(15))`
= `(7sqrt(3)(sqrt(10)- sqrt(3)))/(10 - 3) - (2sqrt(5)(sqrt(6) - sqrt(5)))/(6 - 5) - (3sqrt(2)(3sqrt(2) - sqrt(15)))/(18 - 15)`
= `sqrt3(sqrt10 - sqrt3) - 2sqrt5(sqrt6 - sqrt5) - sqrt2(3sqrt2 - sqrt15)`
= `sqrt30 - 3 - 2sqrt30 + 10 - 6 + sqrt30`
= 0 − 9 + 10
= 1
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.