Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
उत्तर
`(3 - sqrt(3))/(2 + sqrt(2)`
= `(3 - sqrt(3))/(2 + sqrt(2)) xx (2 - sqrt(2))/(2 - sqrt(2)`
= `(3(2 - sqrt(2)) - sqrt(3)(2 - sqrt(2)))/((2)^2 - (sqrt(2))^2)`
= `(6 - 3sqrt(2) - 2sqrt(3) + sqrt(6))/(4 - 2)`
= `(6 - 3sqrt(2) - 2sqrt(3) + sqrt(6))/(2)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/sqrt5`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`