Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
उत्तर
`(5 + sqrt(6))/(5 - sqrt(6)`
= `(5 + sqrt(6))/(5 - sqrt(6)) xx (5 + sqrt(6))/(5 + sqrt(6)`
= `((5 + sqrt(6))^2)/((5)^2 - (sqrt(6))^2`
= `(25 + 6 + 10sqrt(6))/(25 - 6)`
= `(31 + 10sqrt(6))/(19)`
APPEARS IN
संबंधित प्रश्न
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`