Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
उत्तर
`(5 + sqrt(6))/(5 - sqrt(6)`
= `(5 + sqrt(6))/(5 - sqrt(6)) xx (5 + sqrt(6))/(5 + sqrt(6)`
= `((5 + sqrt(6))^2)/((5)^2 - (sqrt(6))^2`
= `(25 + 6 + 10sqrt(6))/(25 - 6)`
= `(31 + 10sqrt(6))/(19)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Draw a line segment of length `sqrt3` cm.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`