Advertisements
Advertisements
प्रश्न
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
उत्तर
x = `4 - sqrt(15)`
∴ `(1)/x = (1)/(4 - sqrt(15))`
= `(1)/(4 - sqrt(15)) xx (4 + sqrt(15))/(4 + sqrt(15))`
= `(4 + sqrt(15))/(4^2 - (sqrt(15))^2`
= `(4 + sqrt(15))/(16 - 15)`
= `(4 + sqrt(15))/(1)`
= `4 + sqrt(15)`
∴ `x + (1)/x = (4 - sqrt(15)) + (4 + sqrt(15))`
= `4 - sqrt(15) + 4 + sqrt(15)`
= 8
Hence, `(x + (1)/x)^2`
= (8)2
= 64
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`
Using the following figure, show that BD = `sqrtx`.