Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
उत्तर
`1/(sqrt 7 + sqrt 2)`
`= 1/(sqrt 7 + sqrt 2) xx (sqrt 7 - sqrt 2)/(sqrt 7 - sqrt 2)`
`= (sqrt 7 - sqrt 2)/((sqrt 7)^2 - (sqrt 2)^2)` ....`[(a + b)(a - b) = a^2- b^2]`
`= (sqrt 7 - sqrt 2)/(7-2)`
`= (sqrt 7 - sqrt 2)/5`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2