Advertisements
Advertisements
प्रश्न
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
उत्तर
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
= `[ sqrt2]/[ sqrt6 - 2] - [ sqrt3 ]/[ sqrt6 + sqrt2 ] `
`= [ sqrt2( sqrt6 + sqrt2) - sqrt3( sqrt6 - sqrt2 )]/[ (sqrt6 - sqrt2)- (sqrt 6 + sqrt2)]`
= `[ sqrt12 + 2 - sqrt18 + sqrt6 ]/[ (sqrt6)^2 - (sqrt2)^2 ]`
= `[ 2sqrt3 + 2 - 3sqrt2 + sqrt6 ]/(6 - 2)`
= `[ 2sqrt3 + 2 - 3sqrt2 + sqrt6 ]/4`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Draw a line segment of length `sqrt8` cm.