Advertisements
Advertisements
प्रश्न
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
उत्तर
x2 = `[( sqrt5 - 2 )/( sqrt5 + 2 )]^2 = [ 5 + 4 - 4sqrt5 ]/[ 5 + 4 + 4sqrt5] = [ 9 - 4sqrt5 ]/[ 9 + 4sqrt5 ]`
= `[ 9 - 4sqrt5 ]/[ 9 + 4sqrt5 ] xx [( 9 - 4sqrt5 )/( 9 - 4sqrt5 )] = (9 - 4sqrt5)^2/[(9)^2 - (4sqrt5)^2]`
= `[ 81 + 80 - 72sqrt5]/[ 81 - 80 ] = 161 - 72sqrt5 `
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the lowest rationalising factor of : √13 + 3
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If x = 1 - √2, find the value of `( x - 1/x )^3`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `5/(3sqrt(5))`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).