Advertisements
Advertisements
प्रश्न
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
उत्तर
x2 = `[( sqrt5 - 2 )/( sqrt5 + 2 )]^2 = [ 5 + 4 - 4sqrt5 ]/[ 5 + 4 + 4sqrt5] = [ 9 - 4sqrt5 ]/[ 9 + 4sqrt5 ]`
= `[ 9 - 4sqrt5 ]/[ 9 + 4sqrt5 ] xx [( 9 - 4sqrt5 )/( 9 - 4sqrt5 )] = (9 - 4sqrt5)^2/[(9)^2 - (4sqrt5)^2]`
= `[ 81 + 80 - 72sqrt5]/[ 81 - 80 ] = 161 - 72sqrt5 `
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : √24
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).