Advertisements
Advertisements
प्रश्न
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
उत्तर
√2 = 1.4 and √3 = 1.7
`1/( 3 + 2√2 )`
= `1/( 3 + 2√2 ) xx ( 3 - 2√2)/( 3 - 2√2)`
= `( 3 - 2√2 )/((3)^2 - (2√2)^2)`
= `( 3 - 2√2 )/( 9 - 8 )`
= 3 - 2√2
= 3 - 2( 1.4 )
= 3 - 2.8
= 0.2
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of 5√2.
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`