Advertisements
Advertisements
Question
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Solution
√2 = 1.4 and √3 = 1.7
`1/( 3 + 2√2 )`
= `1/( 3 + 2√2 ) xx ( 3 - 2√2)/( 3 - 2√2)`
= `( 3 - 2√2 )/((3)^2 - (2√2)^2)`
= `( 3 - 2√2 )/( 9 - 8 )`
= 3 - 2√2
= 3 - 2( 1.4 )
= 3 - 2.8
= 0.2
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3 /sqrt5`
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : 15 - 3√2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`