Advertisements
Advertisements
प्रश्न
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
उत्तर
√2 = 1.4 and √3 = 1.7
`1/( 3 + 2√2 )`
= `1/( 3 + 2√2 ) xx ( 3 - 2√2)/( 3 - 2√2)`
= `( 3 - 2√2 )/((3)^2 - (2√2)^2)`
= `( 3 - 2√2 )/( 9 - 8 )`
= 3 - 2√2
= 3 - 2( 1.4 )
= 3 - 2.8
= 0.2
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`