Advertisements
Advertisements
प्रश्न
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
उत्तर
`[ 2 + sqrt3 ]/[ 2 - sqrt3 ] xx [ 2 + sqrt3 ]/[ 2 + sqrt3] = a + bsqrt3`
= `[ (2 + sqrt3)^2 ]/[ (2)^2 - (sqrt3)^2 ] = a + bsqrt3`
= `[ 4 + 3 + 4sqrt3]/[ 4 - 3 ] = a + bsqrt3`
7 + 4√3 = a + b√3
a = 7, b = 4
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt14`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : √13 + 3
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If x = 5 - 2√6, find `x^2 + 1/x^2`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).