Advertisements
Advertisements
प्रश्न
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
उत्तर
n = `1/[ 3 + 2sqrt2 ]`
n = `1/[ 3 + 2sqrt2 ] xx [ 3 - 2sqrt2 ]/[ 3 - 2sqrt2 ]`
n = `[ 3 - 2sqrt2 ]/[ (3)^2 - (2sqrt2)^2 ]`
n = `[ 3 - 2sqrt2 ]/[ 9 - 8 ]`
n = 3 - 2√2
⇒ n2 = ( 3 - 2√2)2
= (3)2 - 2 x 3 x 2√2 + (2√2)2
= 9 - 12√2 + 8
= 17 - 12√2
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : √13 + 3
If x = 5 - 2√6, find `x^2 + 1/x^2`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`