Advertisements
Advertisements
प्रश्न
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
उत्तर
`1/x = 1/[2sqrt3 + 2sqrt2] xx [2sqrt3 - 2sqrt2]/[2sqrt3 - 2sqrt2]`
= `[2sqrt3 - 2sqrt2]/[(2sqrt3)^2 - (2sqrt2)^2]`
= `[2sqrt3 - 2sqrt2]/(12 - 8)`
= `[cancel(2)^1(sqrt3 - sqrt2)]/cancel(4)_2`
= `(sqrt3 - sqrt2)/2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt14`
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`