Advertisements
Advertisements
प्रश्न
If x = 2√3 + 2√2 , find : `(x + 1/x)`
उत्तर
`x + 1/x = 2sqrt3 + 2sqrt2 + (√3 - √2)/2`
= `2( sqrt3 + sqrt2 ) + (sqrt3 - sqrt2)/2`
= `(4( sqrt3 + sqrt2) + (sqrt3 - sqrt2))/2`
= `[ 4sqrt3 + 4sqrt2 + sqrt3 - sqrt2 ]/2`
= `[ 5sqrt3 + 3sqrt2 ]/2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Write the lowest rationalising factor of : √5 - √2
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 1 - √2, find the value of `( x - 1/x )^3`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`