Advertisements
Advertisements
प्रश्न
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
बेरीज
उत्तर
We rationalize the denominator,
`x = (sqrt5 - 2)/(sqrt5 + 2) xx (sqrt5 - 2)/(sqrt5 - 2)`
`x = (5 + 4 - 3sqrt5)/ (5 -4)`
`x = (9 - 4 sqrt5)/1`
Then, `x^2 = (9 - 4 sqrt5) (9 - 4 sqrt5)`
`= 81 + 16 ×5 - 72sqrt5 `
`= 161 - 72sqrt5`
We rationalize the denominator,
`y = (sqrt5 + 2)/(sqrt5 - 2) xx (sqrt5 + 2)/(sqrt5 + 2)`
`y = (5 + 4 + 4sqrt5)/(5-4)`
`y = (9 + 4sqrt5)/1`
Then, `y^2 = (9 + 4sqrt5) (9 + 4 sqrt5)`
`= 81 + 16 + 5 + 72 sqrt5`
`= 161 + 72sqrt5`
Now, `x = (sqrt5 + 2)/(sqrt5 - 2)`
and `y = (sqrt5 - 2)/(sqrt5 + 2)`
Then, `xy = (sqrt5 + 2)/(sqrt5 - 2) xx (sqrt5 - 2)/(sqrt5 + 2)`
xy = 1
Therefore, `x^2 + y^2 + xy`
`=161 - 72sqrt5 + 161 + 72sqrt5 + 1 = 323`
shaalaa.com
Rationalisation of Surds
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Write the lowest rationalising factor of : 7 - √7
Write the lowest rationalising factor of : √13 + 3
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If x = 1 - √2, find the value of `( x - 1/x )^3`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`