Advertisements
Advertisements
प्रश्न
If x = 1 - √2, find the value of `( x - 1/x )^3`
उत्तर
Given that x = 1 - √2
We need to find the value of `( x - 1/x )^3`
Since x = 1 - √2, we have
`1/x = 1/( 1 - sqrt2) xx ( 1 + sqrt2 )/( 1 + sqrt2 )`
⇒ `1/x = (1 + sqrt2)/( (1)^2 - (sqrt2)^2 )` [ Since ( a - b )( a + b ) = a2 - b2 ]
⇒ `1/x = [ 1 + sqrt2 ]/[ 1 - 2 ]`
⇒ `1/x = [ 1 + sqrt2 ]/-1`
⇒ `1/x = -( 1 + sqrt2 )` .....(1)
Thus, `( x - 1/x ) = ( 1 - √2 ) - (-( 1 + sqrt2))`
⇒ `( x - 1/x ) = 1 - √2 + 1 + √2`
⇒ `( x - 1/x ) = 2`
⇒ `( x - 1/x )^3 = 2^3`
⇒ `( x - 1/x )^3 = 8`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of : √24
Write the lowest rationalising factor of : √5 - √2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).