Advertisements
Advertisements
प्रश्न
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).
उत्तर
`(8 - 5sqrt(2))/(3 - 2sqrt(2)) = ((8 - 5sqrt(2))(3 + 2sqrt(2)))/((3 - 2sqrt(2))(3 + 2sqrt(2))`
= `(24 + 16sqrt(2) - 15sqrt(2) - 10 xx 2)/(3^2 - (2sqrt(2))^2`
= `(24 + sqrt(2) - 20)/(9 - 8)`
= `4 + sqrt(2)`
= 4 + 1.414
= 5.414
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt14`
Rationalize the denominator.
`5/sqrt 7`
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the lowest rationalising factor of : √13 + 3
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If x = 5 - 2√6, find `x^2 + 1/x^2`
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`