Advertisements
Advertisements
Question
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).
Solution
`(8 - 5sqrt(2))/(3 - 2sqrt(2)) = ((8 - 5sqrt(2))(3 + 2sqrt(2)))/((3 - 2sqrt(2))(3 + 2sqrt(2))`
= `(24 + 16sqrt(2) - 15sqrt(2) - 10 xx 2)/(3^2 - (2sqrt(2))^2`
= `(24 + sqrt(2) - 20)/(9 - 8)`
= `4 + sqrt(2)`
= 4 + 1.414
= 5.414
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`11 / sqrt 3`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = 5 - 2√6, find `x^2 + 1/x^2`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`