Advertisements
Advertisements
Question
Rationalise the denominator `1/sqrt(50)`
Solution
`1/sqrt(50) = 1/(sqrt(25 xx 2)`
= `1/(5sqrt(2))`
= `1/(5sqrt(2)) xx sqrt(2)/sqrt(2)`
= `sqrt(2)/(5 xx 2)`
= `sqrt(2)/10`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt14`
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of 5√2.
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).