Advertisements
Advertisements
प्रश्न
Rationalise the denominator `1/sqrt(50)`
उत्तर
`1/sqrt(50) = 1/(sqrt(25 xx 2)`
= `1/(5sqrt(2))`
= `1/(5sqrt(2)) xx sqrt(2)/sqrt(2)`
= `sqrt(2)/(5 xx 2)`
= `sqrt(2)/10`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`