Advertisements
Advertisements
प्रश्न
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`
उत्तर
`sqrt(5) + 2` ⇒ x2 = `(sqrt(5) + 2)^2`
= `(sqrt(5))^2 + 2 xx 2 xx sqrt(5) + 2^2`
= `5 + 4sqrt(5) + 4`
= `9 + 4sqrt(5)`
`1/x = 1/(sqrt(5) + 2)`
= `(sqrt(5) - 2)/((sqrt(5) + 2)(sqrt(5) - 2))`
= `(sqrt(5) - 2)/((sqrt(5))^2 - 2^2)`
= `(sqrt(5) - 2)/(5 - 4)`
= `sqrt(5) - 2`
`1/x^2 = (sqrt(5) - 2)^2`
= `(sqrt(5))^2 - 2 xx sqrt(5) xx 2 + 2^2`
= `5 - 4sqrt(5) + 4`
= `9 - 4sqrt(5)`
∴ `x^2 + 1/x^2 = 9 + 4sqrt(5) + 9 - 4sqrt(5)` = 18
The value of `x^2 + 1/x^2` = 18
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 3√2 + 2√3
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`