Advertisements
Advertisements
Question
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`
Solution
`sqrt(5) + 2` ⇒ x2 = `(sqrt(5) + 2)^2`
= `(sqrt(5))^2 + 2 xx 2 xx sqrt(5) + 2^2`
= `5 + 4sqrt(5) + 4`
= `9 + 4sqrt(5)`
`1/x = 1/(sqrt(5) + 2)`
= `(sqrt(5) - 2)/((sqrt(5) + 2)(sqrt(5) - 2))`
= `(sqrt(5) - 2)/((sqrt(5))^2 - 2^2)`
= `(sqrt(5) - 2)/(5 - 4)`
= `sqrt(5) - 2`
`1/x^2 = (sqrt(5) - 2)^2`
= `(sqrt(5))^2 - 2 xx sqrt(5) xx 2 + 2^2`
= `5 - 4sqrt(5) + 4`
= `9 - 4sqrt(5)`
∴ `x^2 + 1/x^2 = 9 + 4sqrt(5) + 9 - 4sqrt(5)` = 18
The value of `x^2 + 1/x^2` = 18
APPEARS IN
RELATED QUESTIONS
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the lowest rationalising factor of : √5 - √2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If x = 5 - 2√6, find `x^2 + 1/x^2`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`