Advertisements
Advertisements
Question
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Solution
`(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18)) = (sqrt(16 xx 3) + sqrt(16 xx 2))/(sqrt(9 xx 3) - sqrt(9 xx 2))`
= `(4sqrt(3) + 4sqrt(2))/(3sqrt(3) - 3sqrt(2))`
= `(4(sqrt(3) + sqrt(2)))/(3(sqrt(3) - sqrt(2))`
= `(4(sqrt(3) + sqrt(2)))/(3(sqrt(3) - sqrt(2))) xx ((sqrt(3) + sqrt(2)))/((sqrt(3) + sqrt(2)))`
= `(4(sqrt(3) + sqrt(2))^2)/(3[(sqrt(3))^2 - (sqrt(2))^2])`
= `(4[(sqrt(3))^2 + 2sqrt(3) xx sqrt(2) + (sqrt(2))^2])/(3(3 - 2))`
= `4/3(3 + 2sqrt(6) + 2)`
= `4/3(5 + 2sqrt(6))`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : √13 + 3
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = 5 - 2√6, find `x^2 + 1/x^2`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`