Advertisements
Advertisements
प्रश्न
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
उत्तर
`(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18)) = (sqrt(16 xx 3) + sqrt(16 xx 2))/(sqrt(9 xx 3) - sqrt(9 xx 2))`
= `(4sqrt(3) + 4sqrt(2))/(3sqrt(3) - 3sqrt(2))`
= `(4(sqrt(3) + sqrt(2)))/(3(sqrt(3) - sqrt(2))`
= `(4(sqrt(3) + sqrt(2)))/(3(sqrt(3) - sqrt(2))) xx ((sqrt(3) + sqrt(2)))/((sqrt(3) + sqrt(2)))`
= `(4(sqrt(3) + sqrt(2))^2)/(3[(sqrt(3))^2 - (sqrt(2))^2])`
= `(4[(sqrt(3))^2 + 2sqrt(3) xx sqrt(2) + (sqrt(2))^2])/(3(3 - 2))`
= `4/3(3 + 2sqrt(6) + 2)`
= `4/3(5 + 2sqrt(6))`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Rationalize the denominator.
`11 / sqrt 3`
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : √5 - √2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If x = 5 - 2√6, find `x^2 + 1/x^2`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`