Advertisements
Advertisements
प्रश्न
Write the lowest rationalising factor of : √5 - √2
उत्तर
√5 - √2
( √5 - √2 )( √5 + √2 ) = ( √5 )2 - ( √2 )2 = 3
Therefore lowest rationalizing factor is √5 + √2
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).