Advertisements
Advertisements
Question
Write the lowest rationalising factor of : √5 - √2
Solution
√5 - √2
( √5 - √2 )( √5 + √2 ) = ( √5 )2 - ( √2 )2 = 3
Therefore lowest rationalizing factor is √5 + √2
APPEARS IN
RELATED QUESTIONS
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : √24
Write the lowest rationalising factor of : 15 - 3√2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If x = 5 - 2√6, find `x^2 + 1/x^2`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`