Advertisements
Advertisements
प्रश्न
Write the lowest rationalising factor of : √5 - √2
उत्तर
√5 - √2
( √5 - √2 )( √5 + √2 ) = ( √5 )2 - ( √2 )2 = 3
Therefore lowest rationalizing factor is √5 + √2
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = 1 - √2, find the value of `( x - 1/x )^3`
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`