Advertisements
Advertisements
प्रश्न
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
उत्तर
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
`3/[ sqrt3 - sqrt2 ] xx [ sqrt3 + sqrt2 ]/[ sqrt3 + sqrt2 ]= asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2)/ ((sqrt3^2) - (sqrt2^2)) = asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2) / (3-2) = asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2)/1 = asqrt3 - bsqrt2`
`a = sqrt3 - bsqrt2 = 3sqrt3 + 3sqrt2`
∴ a= 3 and b= -3
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt14`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`