Advertisements
Advertisements
Question
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
Solution
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
`3/[ sqrt3 - sqrt2 ] xx [ sqrt3 + sqrt2 ]/[ sqrt3 + sqrt2 ]= asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2)/ ((sqrt3^2) - (sqrt2^2)) = asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2) / (3-2) = asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2)/1 = asqrt3 - bsqrt2`
`a = sqrt3 - bsqrt2 = 3sqrt3 + 3sqrt2`
∴ a= 3 and b= -3
APPEARS IN
RELATED QUESTIONS
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : √24
Write the lowest rationalising factor of : √13 + 3
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 5 - 2√6, find `x^2 + 1/x^2`
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`