Advertisements
Advertisements
Question
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Solution
`(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2)) = ((5sqrt(3) + sqrt(2))(sqrt(3) - sqrt(2)))/((sqrt(3) + sqrt(2))(sqrt(3) - sqrt(2))`
= `(5(3) - 5sqrt(3) xx sqrt(2) + (sqrt(2)sqrt(3) - (2)))/((sqrt(3))^2 - (sqrt(2))^2`
= `(15 - 5sqrt(6) + sqrt(6) - 2)/(3 - 2)`
= `(13 - 4sqrt(6))/1`
= `13 - 4sqrt(6)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt14`
Write the lowest rationalising factor of : √24
Write the lowest rationalising factor of : √18 - √50
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `sqrt(75)/sqrt(18)`