Advertisements
Advertisements
Question
Rationalise the denominator `sqrt(75)/sqrt(18)`
Solution
`sqrt(75)/sqrt(18) = sqrt(3 xx 25)/sqrt(2 xx 9)`
= `(5sqrt(3))/(3sqrt(2))`
= `(5sqrt(3))/(3sqrt(2)) xx sqrt(2)/sqrt(2)`
= `(5sqrt(6))/(3 xx 2)`
= `(5sqrt(6))/6`
APPEARS IN
RELATED QUESTIONS
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 2√3 + 2√2 , find : `(x + 1/x)`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`