Advertisements
Advertisements
प्रश्न
Rationalise the denominator `sqrt(75)/sqrt(18)`
उत्तर
`sqrt(75)/sqrt(18) = sqrt(3 xx 25)/sqrt(2 xx 9)`
= `(5sqrt(3))/(3sqrt(2))`
= `(5sqrt(3))/(3sqrt(2)) xx sqrt(2)/sqrt(2)`
= `(5sqrt(6))/(3 xx 2)`
= `(5sqrt(6))/6`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the lowest rationalising factor of : √24
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Rationalise the denominator `5/(3sqrt(5))`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`