Advertisements
Advertisements
प्रश्न
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
उत्तर
x =`[ 2 + sqrt5 ]/[ 2 - sqrt5]`
=`[ 2 + sqrt5 ]/[ 2 - sqrt5] xx [ 2 + sqrt5 ]/[ 2 + sqrt5] `
=`[( 2 + sqrt5)^2]/[2^2 - (sqrt5)^2]`
=`( 4 + 4sqrt5 + 5)/(4 - 5)`
=`( 9 + 4sqrt5)/ -1`
= `- ( 9 - 4sqrt5)`
y = `[2 - sqrt5 ]/[ 2 + sqrt5]`
=`[ 2 - sqrt5 ]/[ 2 + sqrt5] xx [ 2 - sqrt5 ]/[ 2 - sqrt5] `
=`[( 2 - sqrt5)^2]/[2^2 - (sqrt5)^2]`
=`( 4 - 4sqrt5 + 5)/(4 - 5)`
=`( 9 - 4sqrt5 )/ -1`
=` - ( 9 + 4sqrt5 )`
∴ ` x^2 - y^2 = ( - 9 - 4sqrt5 )^2 - ( - 9 + 4sqrt5 )^2`
= `81 + 72sqrt5 + 80 - ( 81 - 72sqrt5 + 80)`
= `81 + 72sqrt5 + 80 - 81 + 72sqrt5 - 80`
= `144sqrt5`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = 1 - √2, find the value of `( x - 1/x )^3`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`