Advertisements
Advertisements
प्रश्न
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
उत्तर
`sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
= `sqrt( 9 xx 2 )/[5sqrt( 9 xx 2) + 3sqrt( 36 xx 2 ) - 2sqrt( 81 xx 2 )]`
= `(3sqrt2)/( 15sqrt2 + 18sqrt2 - 18sqrt2 )`
= `(3sqrt2)/( 15sqrt2 )`
= `1/5`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that Negative of an irrational number is irrational.
Draw a line segment of length `sqrt5` cm.