Advertisements
Advertisements
प्रश्न
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
उत्तर
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
`=> (sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) xx (sqrt(x^2 + y^2) + y)/(sqrt(x^2 - y^2) + x)`
`=> ((sqrt(x^2 + y^2) - y)(sqrt(x^2 + y^2) + y))/((x - sqrt(x^2 - y^2))(x + sqrt(x^2 - y^2)))`
`=> ((sqrt(x^2 + y^2))^2 - y^2)/(x^2 - (sqrt(x^2 - y^2))^2)`
`=> (x^2 + cancel(y^2) - cancel(y^2))/(cancel(x^2) - cancel(x^2) + y^2)`
`=> x^2/y^2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.