Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
उत्तर
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
`= (sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3) xx (sqrt 5 - sqrt 3)/(sqrt 5 - sqrt 3)`
`= (sqrt 5 - sqrt 3)^2/((sqrt 5)^2 - (sqrt 3)^2) ....[because (a + b)(a - b) = a^2 - b^2]`
`= ((sqrt 5)^2 - 2(sqrt 5)(sqrt 3) + (sqrt 3)^2)/(5-3) ...[because (a - b)^2 = a^2 - 2ab + b^2]`
`= (5 - 2sqrt15 + 3 )/2`
`= (8 - 2sqrt 15)/2`
`= (2 (4 - sqrt15))/2`
`= 4 -sqrt15`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2